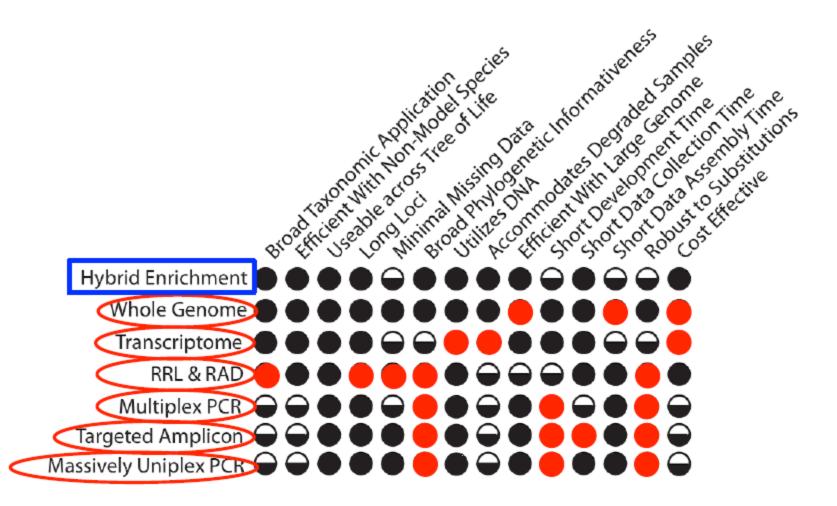


Hybrid enrichment – Anchored phylogenomics

Collection of High-Throughput Data


- Targeted Amplicon Sequencing or Parallel Tagged Sequencing
- Multiplex PCR
- Massively Parallel Uniplex PCR
- Reduced Representation Library or RAD Sequencing
- Transcriptome Sequencing
- Hybrid Enrichment

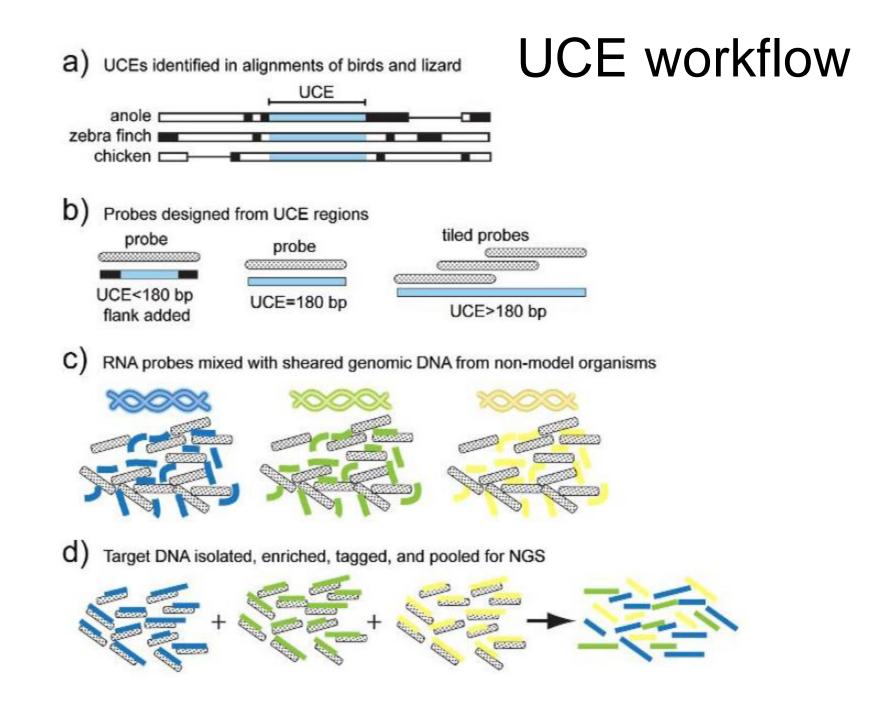
• BUT: more data = better data ??

Table 1
Methods of sample preparation for using NGS in phylogeography and phylogenetics.

Method	Other names or variants	Literature method	Literature examples	Benefits	Drawbacks	Best application
Amplicon sequencing	Multiplex PCR, parallel tagged sequencing	Binladen et al. (2007), Meyer et al. (2008), Tewhey et al. (2009b)	Chan et al. (2010), Griffin et al. (2011), Gunnarsdóttir et al. (2011); Morin et al. (2010), Parks et al. (2009)	Highly targeted. Results in nearly complete data matrices. Needed coverage easy to calculate. Circumvents individual sequencing reactions and phasing nuclear loci compared to Sanger sequencing	Requires PCR of each individual at each locus	Small- to medium- scale projects targeting a limited number of genes
Restriction-digest	Double-digest genome reduction, RAD sequencing (RAD-seq), complexity reduction of multilocus sequences (CRoPS), Genotyping by Sequencing (GBS)	Baird et al. (2008), Davey et al. (2011)	Andolfatto et al. (2011), Amaral et al. (2009), Bers et al. (2010), Emerson et al. (2010), Gompert et al. (2010), Hohenlohe et al. (2011), Hyten et al. (2010a,b), Kerstens et al. (2009), Ramos et al. (2009); Sánchez et al. (2009); Van Orsouw et al. (2007); Van Tassell et al. (2008), Wiedmann et al. (2008); Williams et al. (2010)	Broad, random genomic sampling of thousands of independent genomic regions. Requires no prior genomic resources whatsoever	Reproducibility and throughput may be limited by gel extraction step. Not targeted, thus coverage can be difficult to estimate. Null alleles could skew diversity estimates	Intraspecific studies of recent divergence
Target enrichment	Sequence capture, targeted resequencing, primer extension capture (PEC)	Albert et al. (2007), Gnirke et al. (2009), Hodges et al. (2007), Okou et al. (2007), Tewhey et al. (2009a), Maricic et al. (2010)	Briggs et al. (2009; Faircloth et al. in press)	Rapid collection of thousands of loci without individual PCR	Requires some prior genomic knowledge, but not necessarily a sequenced genome	Phylogenomics at taxonomic levels above at and above the species level
Transcriptome	RNA-seq	Morin et al. (2008); Marioni et al. (2008)	Barbazuk and Schnable (2011), Cánovas et al. (2010), Chepelev et al. (2009); Geraldes et al. (2011), Hittinger et al. (2010)	Can leverage data from expression studies	Skewed read distributions can outstrip coverage, making it difficult to find orthologous loci	Leveraging existing cDNA libraries

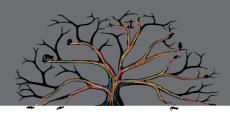
Comparison of Methods

Syst. Biol. 61(5):717–726, 2012 © The Author(s) 2012. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com DOI:10.1093/sysbio/sys004 Advance Access publication on January 9, 2012

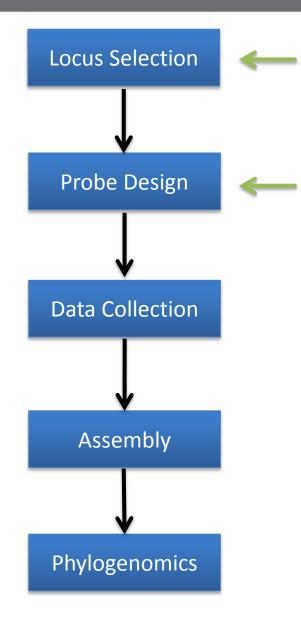

Ultraconserved Elements Anchor Thousands of Genetic Markers Spanning Multiple Evolutionary Timescales

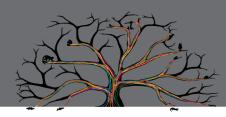
BRANT C. FAIRCLOTH^{1,*}, JOHN E. MCCORMACK², NICHOLAS G. CRAWFORD³, MICHAEL G. HARVEY^{2,4}, ROBB T. BRUMFIELD^{2,4}, AND TRAVIS C. GLENN⁵


Syst. Biol. 61(5):727–744, 2012 © The Author(s) 2012. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com DOI:10.1093/sysbio/sys049 Advance Access publication on May 17, 2012

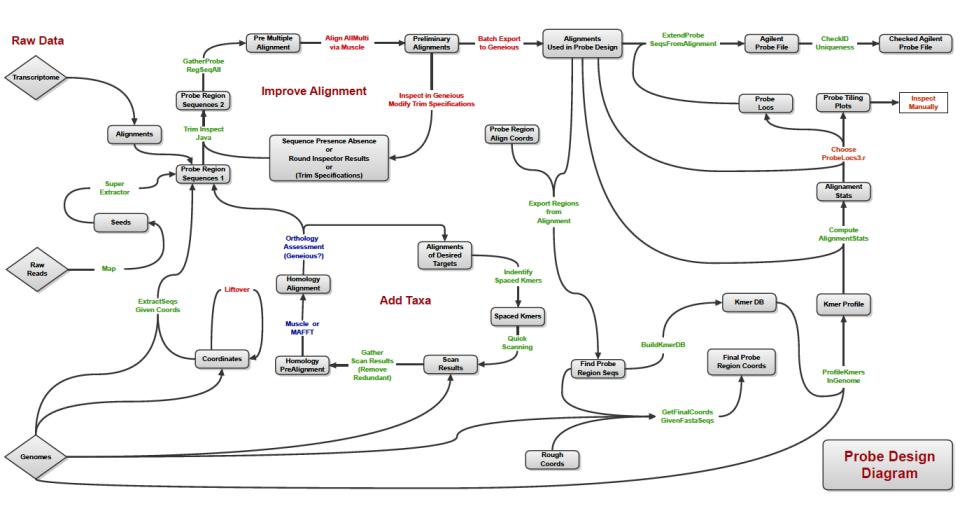

Anchored Hybrid Enrichment for Massively High-Throughput Phylogenomics

ALAN R. LEMMON^{1,*}, SANDRA A. EMME², AND EMILY MORIARTY LEMMON²




UCE workflow


Anchored Phylogenomics Workflow

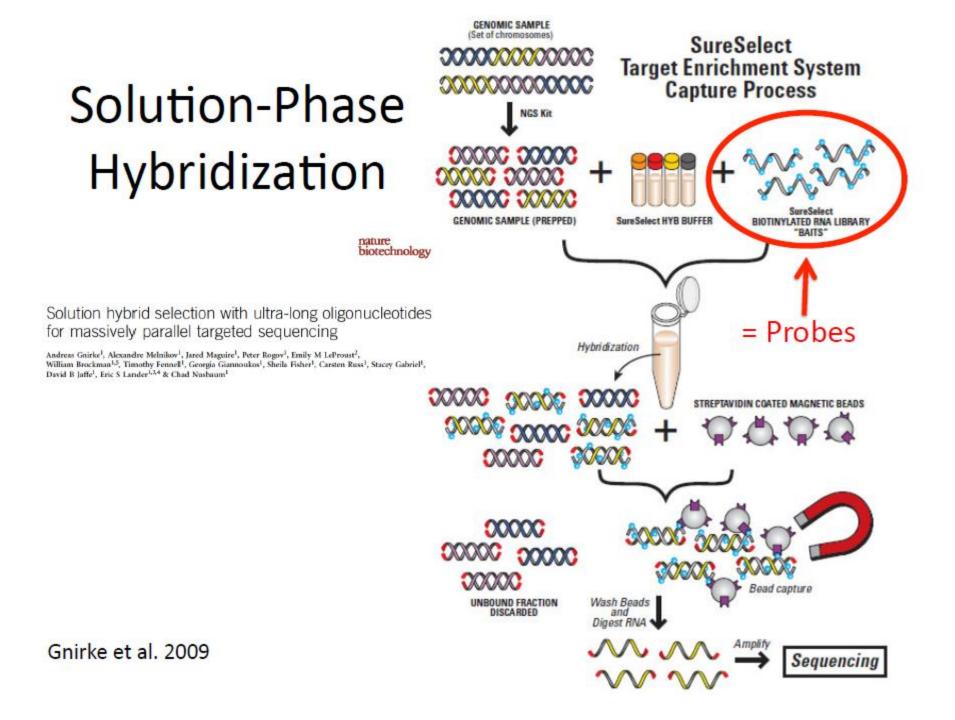


Locus Selection & Probe Design

- Locus Selection
 - ~500 "single copy" loci (typically long exons)
 - Conserved element (~20% divergence required)
 - Adjacent to less conserved regions
 - Loci are selected based on broad taxonomic group (e.g., vertebrates)
- Probe Design
 - Incorporate sufficient number of lineages
 - Tile probes across conserved region
 - Goal is to capture ~1500bp regions
 - Probe sets are designed for project-specific clade

Probe Design Workflow

Phases of Hybrid Enrichment for Phylogenomics

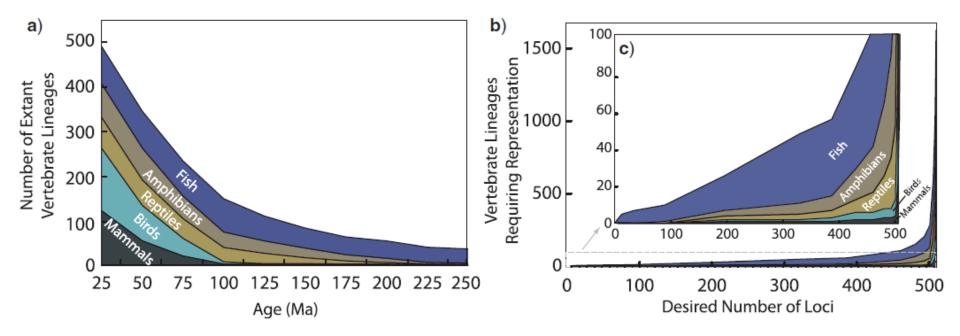

Bioinformatics of locus selection Bioinformatics of probe design Wet-lab sample processing Bioinformatics of raw data analysis

Choose target loci using genomes

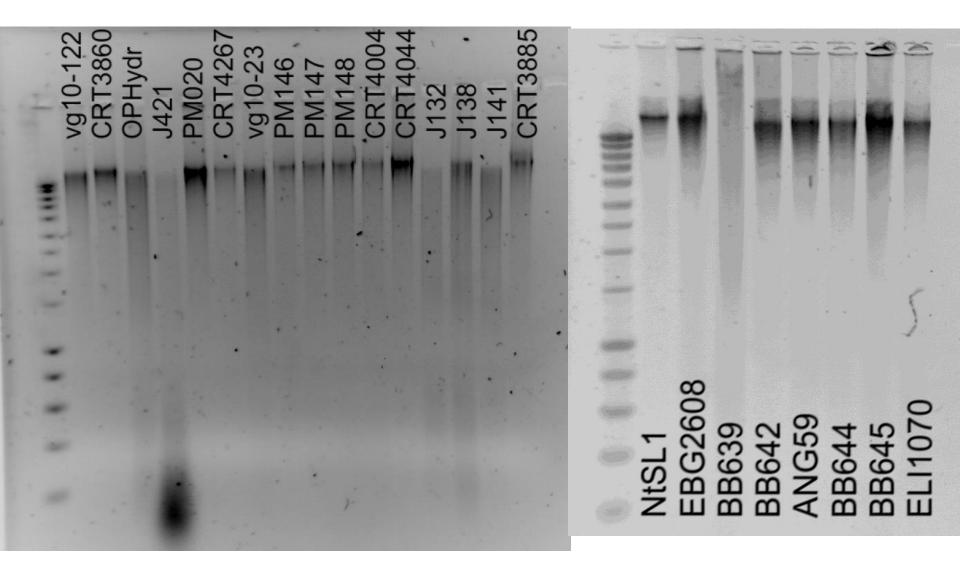
Tile probes across target regions

Genomic DNA→ raw sequence reads

Raw sequence reads → phased alleles, alignments, models of evolution, concordance analyses, and phylogenies



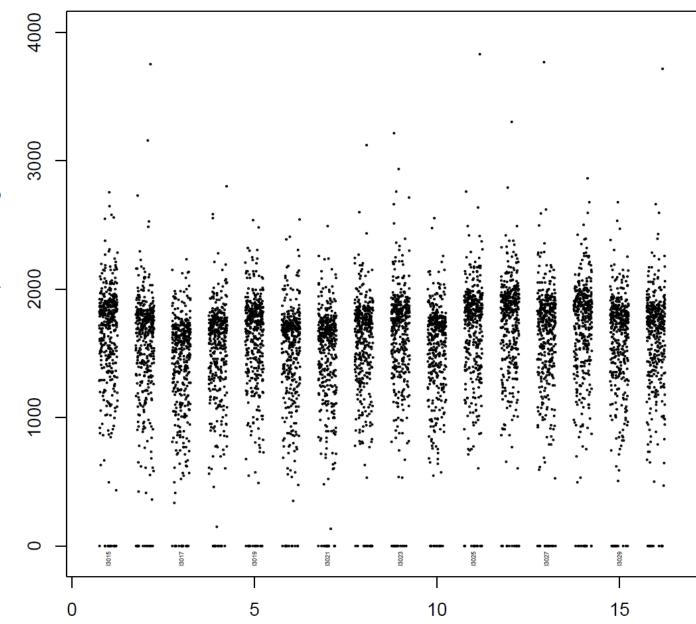
Hybrid Enrichment


- Disadvantages:
 - Large equipment investment for small operations
 - Equipment required (Bioanalyzer, Covaris or other sonicator, qPCR machine, etc.)
 - Bioinformatic training required for locus selection, probe design, analysis of raw data
 - Substantial investment in reagents
 - Indexes for library preparation
 - Other library preparation reagents
 - Hybrid enrichment kit

Hybrid Enrichment

- Advantages:
 - Large quantity of data
 - Complete data matrices! Can trim out all missing data and still have more than enough
 - Fast data collection (DNA to phylogeny 2 weeks)
 - Works on degraded samples and ancient DNA
 - DNA starting material (RNA not needed)
 - Can use single probe design (kit) for broad taxonomic group (e.g., Vertebrata)
 - No problem for non-model systems

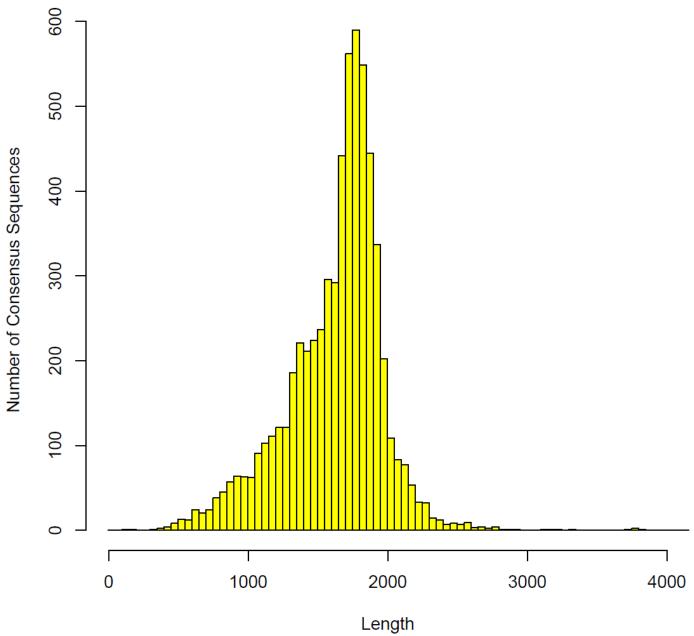
Own experiences: samples \rightarrow trees

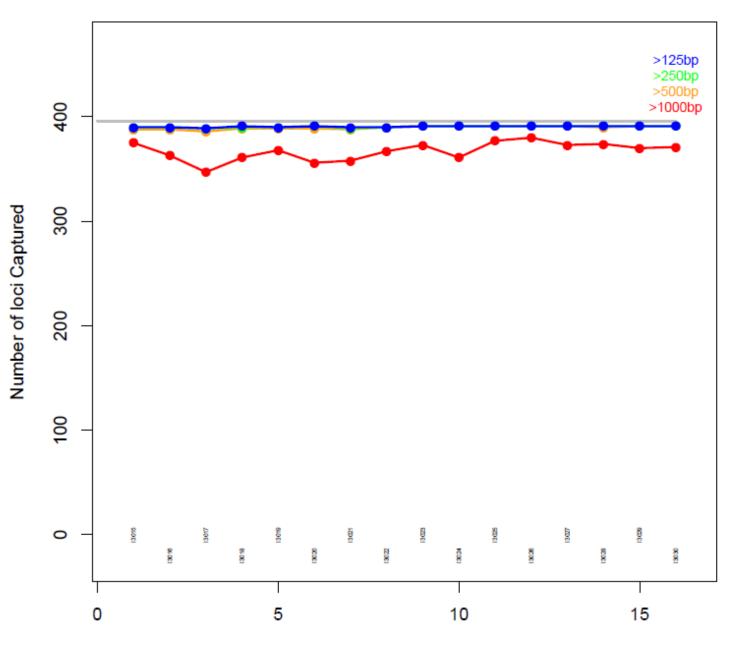

Requirement: > 1.5- 2.0 micrograms of RNA-free DNA, quantified by Qubit

Output summary

X				-		_		_	P0041_Ass	emblySumm	ary_Summary	1.xlsx - Mi	crosoft Excel	_	_	_	_		_ 0
Fil	e Hor	ne Inse	t Par	ge Layout	Formulas [Data Review	v View A	dd-Ins			,,								۔ () ۵
rii rea		inc inise	, ray	gelayour	i officiais L	Data Review	VIEW A	00-115											
	Cut		Calibri	Ŧ	12 × A A	= = =	&~ ≣ w	rap Text	General	•	<u>≤₹</u>		Normal	Bad G	ood	- E X	Σ Ai	utoSum * A	ñ
Past	e	nat Painter	BI	<u>u</u> -	• 👌 • 🗛 •	E E E	€ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	erge & Center 👻	ഈ - %	• .0 .00 .00 →.0	Conditional Formatting		Neutral	Calculation	heck Cell	↓ Insert Delet	e Format	Sort & ear ▼ Filter ▼	Find &
	Clipboard			Font	G.		Alignment	Es.	Numb	er 🗔	· ormatting ·	us lable *	St	yles		Cells		Editing	Select -
	9 - (°' -	Ŧ																	
	Т3	•	0	<i>f</i> * 16	595,93796526054	4													
	Н	I.		J	K	L	М	N	СР	Q	R	S	Т	U	V	W	Х	Y	Z
1	TaxonSE	nRawRead	ls nRa	wBases	nMergedRea	nMergedBase	nUnmergedR	nUnmergedB	EnLoci125	nLoci250	nLoci500	nLoci1000	AvgLocLenAl	AvgLocLenUpper	%OnTarget	ReadsPerLocus	BasesPerLoci	AvgNHomolo	ogs
2	13015	47771	38 89	6762700	1787929	388431857	1201280	360384000	390	390	388	37	75 1786,85856	1645,004963	24,3780062	2650,260546	452968,674	9 1,49627792	2
3	13016	58621	35 97	8836100	2599348	532361802	663439	199031700	390	390	388	36	53 1695,93796	5 1553,528536	24,840621	2449,873449	450825,528	5 1,54094293	3
4	13017	15782	21 26	4897900	695228	141742225	187765	56329500	389	389	386	34	1547,64764	3 1403,248139	30,3118736	798,7543424	148980,771	7 1,25062035	5
5	13018	71580	28 115	7188800	3300732	662671015	556564	166969200	391	390	389	36	51 1650,30769	2 1511,124069	22,8521598	2518,937965	470448,406	9 1,49875931	L
6	13019	68320	14 117	5247000	2914524	618704165	1002966	300889800	390	390	389	36	58 1729,2679	9 1585,047146	22,8918046	2845,146402	522361,424	3 1,52605459)
7	13020	85302	58 136	0788900	3994295	675067081	541668	162500400	391	391	389	35	6 1632,85856	1 1492,560794	16,2922831	1908,617866	338607,605	5 1,59057072	2
8	13021	53247	04 85	3784400	2478756	486518632	367192	110157600	390	389	388	35	58 1617,18610	4 1479,449132	22,9678376	1811,129032	340058,630	3 1,4292804	Ļ
9	13022	77839	16 126	5887200	3564292	725790044	655332	196599600	390	390	390	36	57 1707,27543	4 1558,615385	25,2503048	3128,148883	577931,009	9 1,5955335	5
10	13023	56297	11 96	3713100	2417334	508535533	795043	238512900	391	391	391	37	73 1777,59305	2 1629,409429	25,6548163	2629,223325	475567,997	5 1,53101737	7
11	13024	70961	02 113	8941300	3299631	650125192	496840	149052000	391	391	391	36	51 1655,64019	9 1515,521092	24,7735938	2684,885856	491277,694	8 1,62779156	5
12	13025	70021	76 122	4966300	2918955	603449691	1164266	349279800	391	391	391	37	77 1819,02729	5 1669,471464	22,1433948	2943,471464	523490,454	1,60545906	5
13	13026	70788	38 132	3175500	2668253	600389055	1742332	522699600	391	391	391	38	30 1860,63523	6 1703,942928	21,6891425	3486,764268	604437,466	5 1,60297767	7
14	13027	57763	76 99	8519400	2447978	529884733	880420	264126000	391	391	391	37	73 1759,53101	7 1618,62531	30,9045738	3332,885856	608897,352	4 1,57816377	7
15	13028	70482	98 129	0672000	2746058	609684588	1556182	466854600	391	391	390	37	74 1824,01488	1676,92804	22,2142558	3392,459057	593412,3	3 1,62034739)
	13029	45485	58 78	35783400	1929280	418785734	689998	206999400	391	391	391	37	70 1734,34987	6 1590,493797	36,683912	3082,540943	569633,915	5 1,55334988	3
17	13030	80529	28 132	8104500	3625913	752736503	801102	240330600	391	391	391	37	1 1750,19106	1604,126551	26,5514112	3546,009926	654276,253	1 1,63027295	5
	15712	56837		86781900	2394447	509936184	894826	268447800	391	391			74 1785,69975					5 1,58064516	
	15713	62930	10 114	4346400	2478522	530904291	1335966	400789800	390	390	387	37	73 1870,68486	4 1722,054591	22,3012074	3281,292804	515580,724	5 1,63523573	3
	15714	46302		5028900	2113462	427029470	403301	120990300	390	390			1625,88585					1,52605459	
	15715	43648		6579600	2042954	415050815	278978	83693400	391	391	388	35	6 1608,45905			3019,143921	560858,885	9 1,57320099)
	15716			0378000	3550858	745960878	1250402		390	390			70 1773,15880			-		9 1,72208437	
_	15717			3551800	2861038	586401280	817468	245240400	389	389			58 1732,68238					2 1,61042184	
	15718			1672100	3074989	655068983	1563918	469175400	390	389			75 1884,52357					3 1,66253102	
	15719	33925		2851300	1316364	272991928	759807	227942100	391	391			59 1798,95285					7 1,54342432	
26													,			,		.,	
27																			
28																			
29																			
	► ► She	et1 🕅	/ _								[] ◀								
Read		ant (G																□ 100%	
6															_				16:4
					0 40	A												EN 🔺 🖿 💐	19.11.2

Description of the assembled data (example includes nine samples)


nGenes=434 Number of taxa = 9 Number of sites = 711063 Number of variable sites = 16986 Number of informative sites = 4373 Number of characters (total) = 6399567 % Missing characters (N's and -'s considered only) =1.4503637511725402 % Missing characters (all considered) =1.5992800762926618


Consensus Sequence Length

Sample

Assembly Results – P0041

Assembly Results - P0041

Sample

Approaches to analyze phylogenomic data

Important issues to consider:

- !!! amount of missing/ambiguous data
 !!! alignment
- ! heterozygous data (phased vs. unphased!)

Concatenation versus species tree inference (coalescent analyses)

Concatenation:

- NJ Geneious
- MP TNT
- ML RAxML (...), ~ FastTree
- BI MrBayes, BEAST ...

Coalescent-based Methods for Species Tree Inference

- Summary statistic methods: Start with estimated gene trees
 - Using estimated branch lengths:
 - STEM (Kubatko et al. 2009)
 - ★ STAR, STEAC (Liu et al. 2009)
 - Using topology information only:
 - * Minimize Deep Coalescences (PhyloNet; Than & Nakhleh 2009)
 - ★ MP-EST (Liu et al. 2010)
 - ★ ST-ABC (Fan and Kubatko 2011)
 - * STELLS (Wu 2011)
- Methods that utilize the full data: Input is aligned sequences
 - BEST (Liu and Pearl 2007)
 - *BEAST (Heled and Drummond 2010)
 - New method based on algebraic statistics (Chifman and Kubatko 2013)

- Comparison of approaches:
 - Summary statistic methods
 - ★ Advantage: Quick
 - ★ Disadvantage: Ignore information in data
 - * Most current implementations do not easily allow for assessment of uncertainty
 - Full data methods
 - ★ Advantage: Fully model-based framework
 - ★ Disadvantage: Computationally intensive, sometimes prohibitively so
 - ★ Both BEST and *BEAST utilize a Bayesian framework and involve MCMC